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For more than two decades, there has been a growing of interest in fast simulation techniques 
for estimating probabilities of rare events in queuing networks. Importance sampling is a 
variance reduction method for simulating rare events. The present paper carries out strict 
deadlines to the paper by Dupuis et al for a two node tandem network with feedback whose 
arrival and service rates are modulated by an exogenous finite state Markov process. We 
derive a closed form solution for the probability of missing deadlines. Then we have employed 
the results to an importance sampling technique to estimate the probability of total population 
overflow which is a rare event. We have also shown that the probability of this rare event may 
be affected by various deadline values. 
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Introduction 
For more than two decades, there has 

been a growing of interest in fast simulation 
techniques for estimating probabilities of rare 
events in queuing networks. Among the 
available techniques importance sampling, a 
method in which the system is simulated 
under a different probability distribution (i.e., 
change of measure), has received much 
attention [3]. Importance sampling is a 
variance reduction method for simulating 
rare events. The idea in importance sampling 
is to change the sampling distribution (and 
modify the Monte Carlo estimator 
accordingly) to reduce estimator variance. 
The event of interest is total population 
overflow in a two-node Jackson network that 
allows feedback. In the other words given 
that initially the network is empty, the total 
number of customers in the network becomes 
n before the network empties [8]. Under the 
stability assumption and for large n one 
would expect this event to be rare. 
In the present paper we develop an 
asymptotically optimal importance sampling 
technique for this network whose service and 
arrival processes are modulated by a finite 
state Markov chain. It is assumed that 
whenever a customer in node one has been 
served completely, it receives a deadline 
once entering the second queue, and it should 
finish its service and leave the system before 

missing this deadline. The difference 
between the deadline of a customer and its 
departure time from node one, referred to as 
a relative deadline, is a random variable η  
with a probability distribution function ( )D τ . 
We consider a model with deterministic 
customer impatience. Customer service times 
and relative deadlines form sequences of iid 
random variables that are mutually 
independent. Given the number of customers 
in the system at any time, the future arrival 
process is assumed to be conditionally 
independent of the past history of the system. 
In this paper, we have initially dealt with 
analysis and calculation of feedback rate in 
the network, and have shown its relation to 
relative deadline, arrival rate, and service rate 
too. Based on the feedback rate, we have also 
calculated the probability of missing 
deadline, and have used it for developing an 
asymptotically optimal importance sampling 
technique to estimate probability of total 
population overflow in Jackson network.  
In [10] a similar sample of an asymptotically 
optimal importance sampling technique for 
estimating the probability of total population 
overflow is provided. In that system, 
however, the feedback probability is 
considered constant, and no deadline is 
assumed in the system.    
In [11] a comprehensive study is given on the 
probability of missing the deadlines of 
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customers in M/M/1 queue. It supposes that 
the system drops a customer who misses its 
deadline. In the present study, we have 
extended the idea to a queue network. In 
addition, we do not drop a customer which 
misses its deadline, but we resend it to the 
first queue to be served again.  
The paper is organized as follows. In 
Sections 2 basics of importance sampling and 
asymptotic optimality condition are 
described. Section 3 presents the structure 
and assumptions of the two-node Jackson 
network with feedback and its dynamics. A 
brief review of calculating the probability of 
missing the deadlines is discussed in section 
4, and the proposed dynamic importance 
sampling algorithm is derived in Section 5. 
Section 6 examines examples to illustrate the 
efficacy of our method. Finally, section 7 
concludes the paper. 

  
2 Asymptotic Importance Sampling  
We are interested in efficient importance 
sampling schemes for estimating the buffer 
overflow probability np when n is large. 
Importance sampling simulates the system 
under a different probability distribution, i.e., 
change of measure. Denote by nA  the event 
of buffer overflow, and rewrite ( )n np P A= . 
An importance sampling scheme generates 
samples from a new probability measure, say 

nQ , such that nP Q<< . The estimator is then 
given by the average of independent 
replications of 
ˆ 1

nn A
n

dPp
dQ

=  (2.1) 

where ndP dQ  is the Radon-Nikodym 
derivative [12] or likelihood ratio. Clearly ˆnp  
is unbiased for any such nQ .  
The goal of importance sampling is to choose 

nQ  to minimize the variance, or the second 
moment of ˆnp . An obvious lower bound 
follows from Jensen’s inequality [1] and the 
large deviations properties of ˆnp , 

21 2ˆ ˆlim inf log [ ] lim inf log [ ]n nQ Q
n n n nE p E p

n n
≥  

2lim inf log 2n np
n

γ= = −  (2.2) 

An importance sampling scheme, or the 
change of measure nQ , is said to be 
asymptotically optimal if this lower bound is 
achieved, i.e., if 

21 ˆlim sup log [ ] 2nQ
n nE p

n
γ≤ −  (2.3) 

For future analysis, it is worthwhile to note 
that the second moment equals 

2ˆ ˆ[ ] [ ]nQ P
n nE p E p=  (2.4) 

 
3 Two-node Jackson network with 
feedback  
Consider two-node Jackson network as in 
Fig. 1. The arrival and service rates of the 
system are determined by an exogenous 
Markov process [13] taking values in N={0, 
1, 2, ..., n }, Let n be a positive integer.  
The arrival process to the network is Poisson 
with rateλ  and the arrival rate to the first 
queue is 1λ . Customers are served in the order 
of their arrival, i.e., service discipline is first-
come-first-served (FCFS). Service times are 
exponentially distributed with rates 1µ and 2µ
at node one and two. It is also assumed that 
whenever a customer in node one has been 
served completely, it receives a deadline 
once entering the second queue, and it should 
finish its service and leave the system before 
missing this deadline. In other words, the 
deadlines of customers in the second queue 
are effective until the end of their service at 
node two. If a customer misses its deadline 
irrespective of whether or not it is being 
served at node two, it must return to the first 
queue and wait again for receiving service in 
node one. The probability of missing 
deadline for customers in the second queue is

dϕ  and 1 dϕ− is the probability of leaving the 
network without missing deadline. We 
assume that the two queues share one buffer 
with capacity n . Let 1 2µ µ µ= ∧ . Assuming the 
stability condition (1 )dλ µ ϕ< − , and without 
loss of generality, 1 2 1λ µ µ+ + = , we have [14]  
 

(1 )1lim log log d
n np

n
ϕ µ

γ
λ

−
= − = (3.1) 

 
The goal is to find an efficient importance 
sampling scheme for the estimation of np . 
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Fig. 1. Two-node network with feedback 
 

A. System dynamics 
Let N={N(k): k=0,1,2,…} be the embedded 
discrete time Markov chain that represents 
the queue lengths at the transition epochs of 
the network and suppose that 

1 2( ) ( ( ), ( ))N k N k N k=  where ( )iN k  is the length 
of the queue at node i  after the kth

N
 transition. 

Then the dynamics of  can be modeled by 
N(k+1)=N(k)+π[N(k),Y(k+1)] where {Y(k)} 
are iid random variables taking values in: 
 

{ }0 1 2 3(1,0), ( 1,1), (0, 1), (1, 1)ω ω ω ωΩ = = = − = − = − ,  
 
and the mapping π  is defined as 
 

[ ]
1 1

2 2 3

0, 0
, 0, 0 .

,

if N and y
N y if N and y or

y otherwise

ω
π ω ω

= =
= = =



 (3.2) 

 
The distribution of N  is completely 
determined by that of the sequence { }( )Y Y k= . 
Define { }0 1 2( ) ( , , )P θ θ θ θ+ Ω = =  where θ  is a 
probability on Ω  and [ ]i iθ θ ω=  for every 

0,1, 2i =  under the original probability 
measure P , the distribution of Y (k) is just 
 

1 2 2( , , (1 ) , ) ( )d dλ µ ϕ µ ϕ µ +Θ = − ∈Ρ Ω   (3.3) 
 

See figure 2 for an illustration of the system 
dynamics. 

 
Fig.  2. State dynamics 

 

4 Analysis of missing the deadlines  
Each customer which departs node one and 
arrives at second queue receives a deadline, 
and it should be served in node two before 
missing its deadline. Thus, a customer who 
misses its deadline must return to the first 
queue immediately irrespective of whether or 
not it is being served. This type of customer 
behavior happens frequently in practice and 
has already been studied in references [2, 3]. 
The difference between the deadline of a 
customer in the second queue and its arrival 
time from node one, referred to as a relative 
deadline, is a random variableη  known as 
customer impatience with a probability 
distribution function ( )D τ . In this paper, we 
consider a model with deterministic customer 
impatience. This type of customer impatience 
has been considered in references [5]. The 
probability distribution function of customer 
impatience η is given by 

( , ) 0,D η τ =  if ,τ η<  
( , ) 1,D η τ =   if ,τ η≥   (4.1) 

where η  is a constant denoting the mean 
customer impatience. Customer service times 
and relative deadlines form sequences of iid 
random variables that are mutually 
independent.  
V ≡ the time an arriving customer from node 
one with infinite (no) deadline must wait 
before it completes its service at node two in 
the long run. (4.2) 
V is called the offered sojourn time in the 
system. The probability distribution function 
of V is  
 

( ) ( ),VF P Vτ τ= ≤  (4.3) 
or, equivalently, the probability density 
function 

( )
( ) V

V
dF

f
d
τ

τ
τ

=  (4.4) 

Therefore the probability of missing 
deadline, defined as, 

0
( ) ( ) ( )d VP V D dFϕ θ τ τ

∞
= < < ∞ = ∫  (4.5) 

dϕ represents the steady-state probability that 
a customer misses its deadline. Let N denote 
the set of natural numbers (including 0) and 

+  the set of positive real numbers. We also 
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use ( )E m  to denote an Erlang random 
variable with parameters m  and 2µ ( (0) 0E = ). 
Thus, ( )E m  has the probability distribution 
function 
 

( ) 2( , ) ( ( ) )E mF P E mµ τ τ= ≤   

2

1
2

0

( )
1 ,

!

m i

i

e
i

µ τ µ τ−
−

=

= − ∑ if 0.m >  (4.6) 

and 
( , )m t εΨ ≡ the probability that one of the 

customers in the second queue during [ , ]t t ε+
misses its deadline, given there are m  
customers in the second queue at time t . 
(4.7) 

0

( , )
( ) lim ,m

m
t

t
ε

ε
ξ

ε→

Ψ
= (4.8) 

lim ( )m mt
tξ ξ

→∞
=  (4.9) 

mξ is called the (long-run) conditional loss 
rate for m customers in the second queue. 
We derive a closed-form solution for the 
conditional probability density function of 
the offered sojourn time, given the number of 
customers in the second queue. More 
formally, let 

mV ≡ the time an arriving customer from node 
one with infinite (no) deadline must wait in 
the second queue before it completes its 
service at node two in the long run, given it 
finds m customers in the second queue. 
(4.10) 

mV  is called the conditional offered sojourn 
time, given there are m customers in the 
second queue. We now proceed to derive the 
probability density function of mV . Let 

( ) ( ),
mV mF P Vτ τ= ≤  (4.11) 

( )
( ) m

m

V
V

dF
f

d
τ

τ
τ

= , (

Then we have 

4.12) 

2
0
( ) 1 ,VF e µ ττ −= −  

2
1

( )

01

1( ) (1 )(1 ( )) ( ),
( )m m

x
V V

m m
F e D x dF x

P V

τ µ ττ
η −

− −

−
= − −

≤ ∫
if 1m ≥ ,  (4.13) 
or, equivalently, 

2
0 2( ) ,Vf e µ ττ µ −=  

2
2

1

2
01

( ) ( ) (1 ( )) ,
( )m m

x
V V

m m

ef f x e D x dx
P V

µ τ τ µµ
τ

η −

−

−
= −

≤ ∫  if 

1n ≥ , (4.14) 
A solution for (4.14) may be given as 

2
0 2( ) ,Vf e µ ττ µ −=  

2

1
2

0
11

( ) (1 ( ))
! ( )

m

mm

V m
k kk

f D x dx e
m P V

τ µ τµ
τ

η

+
−

−=

 = −  ≤
∫∏

, if   1m ≥ , (4.15) 
 
Define ( )m sΦ to be the Laplace transform of 

0
(1 ( ))

m

D x
τ −  ∫ , i.e., 

0 0
( ) (1 ( )) .

m
s

m s D x e d
τ τ τ

∞ − Φ = −  ∫ ∫  (4.16) 

Thus we have 

2

02

1( ) (1 ( )) .
( )m

m

V
m

f D x dx e
τ µ ττ

µ
− = − Φ  ∫  (4.17) 

0 0,ξ =  
1 2

2
2

( )
,

( )
m

m
m

m
µ

ξ µ
µ

−Φ
= −

Φ
 if 0.m >  (4.18) 

For the case of deterministic customer 
impatience with η  as the mean customer
impatience ( )m sΘ can then be simplified as 

2 ( ) 21
2

!( , ) ( , ),m E mm
m Fη µ µ η
µ +

Φ =  (4.19) 

where ( ) 2( , )E mF µ η is defined as in (4.6). Also, 
we find 

0 2( , ) 0,ξ η µ =  
( 1) 2 ( ) 2

2 2
( ) 2

( , ) ( , )
( , ) ,

( , )
E m E m

m
E m

F F
F
µ η µ η

ξ η µ µ
µ η

− −
=  if 

0,m >  (4.20) 
and the probability density function of the 
conditional offered sojourn time, (.)

mVf , is 
given by 

2

1
2

( ) 2
( ) ,

( , ) !m

m
m

V
E m

f e
F m

µ τµ
τ τ

µ η

+
−=     if ,τ η<  

2

1
2

( ) 2
( ) ,

( , ) !m

m
m

V
E m

f e
F m

µ τµ
τ η

µ η

+
−=     if ,τ η≥  

(4.21) 
It is clear that the maximum buffer size of the 
second queue equals n . Let ( )mq t ≡  the 
probability that there are m customers in the 
system at time t . (4.22) 
We can write 
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0
1 0 2 1 1

( )
( ) ( ( )) ( ),

dq t
q t t q t

dt
λ µ ξ= − + +  

1 1 1 2
( )

( ) ( ( )) ( )m
m m m

dq t
q t t q t

dt
λ λ µ ξ−= − + +

2 1 1( ( )) ( ),m mt q tµ ξ + ++ +  if 1m ≥ . (4.23) 
Where 1λ is the arrival rate of customers to 
the first queue. Let lim ( )m mt

q q t
→∞

=  (4.24) 

Then, in equilibrium, (4.23) is simplified as 
1 0 2 1 10 ( ) ,q qλ µ ξ= − + +  

1 1 1 2 2 1 10 ( ) ( ) ,m m m m mq q qλ λ µ ξ µ ξ− − += − + + + +  if 1m ≥ . 
(4.25) 
Using (4.18), we get 

2 1
0 2( ),

!

m

m mq q
m

µ λ
µ= Φ  for 1 m n≤ ≤ , (4.26) 

The normalizing condition is 

0

1,
n

i
i

q
=

=∑  (4.27) 

which gives us 

0
2

2 1
1

1 .
( )1
!

n
i i

i

q

i
µ

µ λ
=

=
Φ

+ ∑
(4.28) 

Considering relations (4.18) and (4.26) we 
will have; 

0

n

i i
i

qξ ξ
=

=∑  (4.29) 

ξ represents loss rate of deadline of 
customers in second queue. It is clear that; 

1λ λ ξ= +  4.30) 
Then we arrive at; 

2 1
2

2
2 1

1

1 ( ),
!( )1

!

m

m mn
i i

i

q
m

i

µ λ
µ

µµ λ
=

= × Φ
Φ

+ ∑
 

and 

2 1
2

20
2 1

1

1 ( )
!( )

1
!

n i

i in
jji

j

i
j

µ λξ µ ξ
µ

µ λ=

=

 
 
 

= × Φ Φ + 
 

∑
∑

 

2 1
2

2 0
2 1

1

( )
!( )

1
!

n i

i in
jj i

j

i
j

µ λ
µ ξ

µ
µ λ =

=

= Φ
Φ

+
∑

∑
  (4.31) 

Considering the relation 4.30, we will have; 
2 1

1 2
2 0

2 1
1

( )
!( )

1
!

n i

i in
jj i

j

i
j

µ λ
λ λ µ ξ

µ
µ λ =

=

= + Φ
Φ

+
∑

∑
 

(4.32)  

Relying on the numerical methods, we solve 
relation 4.32, and calculate 1λ andξ . The 
probability density function of customer 
offered sojourn time can then be determined 
as 

1

0

( ) ( ),
i

n

V i V
i

f q fτ τ
−

=

=∑ (4.33) 

The probability of missing deadline is 
derived as 

1

0

( )
n

d i i i
i

q P Vϕ η
−

=

= >∑  

1

0

1 ( )
n

i i i
i

q P V η
−

=

= − ≤∑  

1
2 1 2

20

( )
1

( 1) ( )

n
i i

ii

q
i
µ µ

µ

−
+

=

Φ
= −

+ Φ∑  (4.34) 

iη is a random variable with probability 
distribution function (.)D  denoting the 
relative deadline of the i P

th
P customer in the 

second queue. 
 

5 The dynamic importance sampling 
algorithm  
The importance sampling schemes we 
consider use state-dependent changes of 
measure that can be characterized by 
stochastic kernels [. | .]nΘ  on Ω  given 2

+ , i.e, 
[. | ] ( )n x P+Θ ∈ Ω  for every 2x +∈ . 

To be more precise, for a given threshold n , 
define the scaled state process /nX N n= , 
where N  is defined in section 3. Since the 
definition of π  implies [ , ] [ , ]n xy x yπ π=  for 
every 2x +∈ , it is not difficult to see that nX  
satisfies the equation 

1( 1) ( ) [ ( ), ( 1)]n n nX k X k X k Y k
n
π+ = + +  (5.1)  

with initial condition (0) (0) / 0nX N n= = . The 
importance sampling generates { }( )Y k  as 
follows. The conditional probability of 

( 1) iY k ω+ = , given{ ( ) : 1, 2,..., }Y j j k= , is just 
[ | ( )]n i nX kωΘ  for each i = 0, 1, 2. Define the 

hitting times 
1 2in f{ 0 : ( ) ( ) 1}n n

nT k X k X k= ≥ + =  
0 1 2in f{ 0 : ( ) ( ) 0}n nT k X k X k= ≥ + =  

Let nA be the event of interest, that is, 
1 2{ 1 0}n n

nA X X reaches before returning to= +  
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0{ }nT T= <  
The importance sampling estimator is just 

1

0

[ ( 1)]ˆ 1 .
[ ( 1) | ( )]

n

n

T

n A n n
k

Y kp
Y k X k

−

=

Θ +
=

Θ +∏  (5.2)  

The second moment of ˆnp , thanks to (2.4), 
equals ˆ[ ]P

nE p . The goal is to choose a 
stochastic kernel nΘ  so that this second 
moment (whence the variance of ˆnp ) is as 
small as possible. Another important 
consideration is that one would like nΘ  to be 
simple and easy to implement. Before we 
proceed to construct importance sampling 
algorithms, we collect some notation and 
terminology. Define 

1 2 1 2{( , ) : 0, 1}iD x x x x x= ≥ + ≤  
1 2 1 2{( , ) : 0, 1}iD x x x x x= ≥ + <  

1 2 2{(0, ) : 0 1}x xδ = < <  
2 1 1{( ,0) : 0 1}x xδ = < <  

1 2 1 2{( , ) : 0, 1}e ix x x x xδ = ≥ + =  
2

1 2 1 2{( , ) / : ( , ) }nD D z z n z z Z+= ∩ ∈  
2

1 2 1 2{( , ) / : ( , ) }nD D z z n z z Z+= ∩ ∈  
Sometimes we refer to eδ  as the “exit 
boundary”. 
 

 
Fig. 3. Domains and boundaries 

 
B. 1BThe Isaacs equation and boundary 
Hamiltonian 

The main purpose of this section is to derive 
the Isaacs equation associated with the limit 
differential game that lies underneath 
importance sampling algorithms. The 
derivation will be kept formal. A rigorous 
argument, though possible, is not necessary 
for our purpose. 

We can think of nΘ as a stochastic control 
problem and write down the corresponding 
Dynamic Programming Equation (DPE). To 
this end, we extend the dynamics and let, for 
every nx D∈ , 

1

0

[ ( 1)]ˆ( ) inf [ ] inf 1 .
[ ( 1) | ( )]

n

n
n n

T
P P

n x n x A n n
k

Y kV x E p E
Y k X k

−

Θ Θ
=

 Θ +
= =  Θ + 

∏

For simplicity, we further assume that nx D∈ , 
whence [ , ]x y yπ ≡  for every y∈Ω . Under the 
original probability measure P , the sequence 
{ ( )}Y k  is iid with distributionΘ . Hence the 
DPE holds. Consider a logarithmic transform 
of nV and define 

1( ) lo g ( )n nW x V x
n

= −                                 

We have 
3

( ) 0

[ ]1 1( ) sup log exp log [ ]
[ ]

i
n n i i

P i i

W x nW x
n n

ω
ω ω

ω+Θ∈ Ω =

 Θ = − − + − Θ   Θ  
∑

Remark 1. Relative Entropy Representation 
for Exponential Integrals. 
Let ( , )S F be a measurable space and 

:f S R→ a bounded measurable function. 
Denote by ( )P S the space of probability 
measures on ( , )S F . Then for any ( )P Sγ ∈ , 

( )
log inf ( || )f

P S
S S

e d R f d
θ

γ θ γ θ−

∈

 
− = + 

 
∫ ∫   

Furthermore, the minimizer of the right-
hand-side exists and is mutually absolutely 
continuous with respect to γ. Here the 
relative entropy (. || .)R  is defined as 

log ,
( || )

,
s

d d if
dR

otherwise

θ θ θ γ
γθ γ

 <<= 
 ∞

∫  

A key step in the derivation is to apply the 
relative entropy representation for 
exponential integrals to the right-hand-side of 
the last equation. For completeness, we 
include the representation in its general form 
in Remark 1. It follows that 

3

( )( ) 0

1( ) sup inf [ ]n n i i
PP i

W x W x
nθ
ω θ ω

++ ∈ ΩΘ∈ Ω =

  = +  
 

∑  

3

0

[ ]1 [ ]log ( || )
[ ]

i
i

ii

R
n

ω
θ ω θ

ω=

 Θ
+ + Θ  Θ  

∑  

Note that taking infimum over ( )Pθ +∈ Ω  is 
equivalent to taking infimum over ( )Pθ ∈ Ω  
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since by Remark 1 the minimizing θ  is 
mutually absolutely continuous to Θ , 
whence it belongs to ( )P+ Ω . Suppose for now 
that ( )nW x  converges to ( )W x . Formally 
assume the approximation 

1 1( ) ( ),n i n iW x W x DW x
n n
ω ω + − ≈ 

 
 

 
where DW is the gradient of W . Observing

[ ]  1iθ ω =∑ , we arrive at 

( )( )
0 sup inf ( ), ( )

PP
DW x F

θ
θ

++ ∈ ΩΘ∈ Ω
= 

3

0

[ ]
[ ]log ( || )

[ ]
i

i
ii

R
ω

θ ω θ
ω=

Θ
+ + Θ 

Θ 
∑ (5.3) 

Where 
3

0

( ) [ ].i i
i

F θ θ ω ω
=

=∑ (5.4) 

for each ( )Pθ +∈ Ω . Equation (3.6) is called 
an Isaacs equation. We now discuss the 
boundary conditions. For the exit boundary, 
we have by definition ( ) 1nV x =  or ( ) 0nW x = , 
therefore we impose the Dirichlet [9] 
boundary condition 

( ) 0,W x =  for ex δ∈  (5.5) 
For 1δ and 2δ , we impose the Neumann [9] 
boundary condition that is typically 
associated with constrained dynamics  

( ), 0,iDW x d =  for ix δ∈  (5.6) 
 
Finally, we make a few remarks on the game 
interpretation of importance sampling. The 
Isaacs equation (5.3) indicates that the 
underlying game has two players. The player 
who chooses the change of measure in order 
to minimize the second moment (i.e., Θ ) 
becomes the maximizing player in the game 
due to the negative sign in the logarithmic 
transform. The minimizing player is 
artificially introduced, and chooses θ . We 
will refer to this player as the “large 
deviation player.” The dynamics of the game 
are completely determined by θ , or the 
choice of the large deviation player, while 
the running cost of the game depends on the 
choices of both players. 
Remark 2. The original dynamics have 
initial condition 0x = , and (0)W  

characterizes the asymptotic exponential 
decay rate of the second moment. 
Following the argument (5.3), one can write 
down the Isaacs equation ( ( )) 0H DW x =  for 
x D∈ , where 

3

( )( ) 0

[ ]( ) sup inf , ( ) [ ]log ( || )
[ ]

i
i

P iP i

H p p F R
θ

ω
θ θ ω θ

ω++ ∈ ΩΘ∈ Ω =

Θ = + + Θ Θ 
∑

 (5.7) 
With the Dirichlet boundary condition 

( ) 0W x =  for ex δ∈ . 
However, as far as the boundaries 1δ  and 2δ  
are concerned, the Neumann type boundary 
condition ( ), 0iDW x d =  is not sufficient 
(more precisely, it is not sufficient for 2δ , 
since the direction of constraint is not well 
defined on 2δ ). Instead one has to resort to a 
boundary Hamiltonian, which, loosely 
speaking, is the Hamiltonian that one obtains 
using the state dynamics on the boundary [6]. 
Consequently, the boundary conditions 
become 

( ( )) 0,
i

H DW xδ =  for , 1, 2,ix iδ∈ =  (5.8) 
where the boundary Hamiltonian 

i
Hδ  is 

defined exactly as H except ( )F θ is replaced 
by ( )iF θ with 

1( ) [ ]. ,i i
i j

F θ θ ω ω
≠

=∑    

2
2,3

( ) [ ].i i
i

F θ θ ω ω
≠

= ∑  (5.9) 

Proposition 1. For every dp∈ , there exist 
a saddle point for the Hamiltonian H , say 

* *( ( ), ( )) ( ) ( )p p P Pθ + +Θ ∈ Ω × Ω , given by 
* *( )[ ] ( )[ ]i ip pω θ ωΘ =

{ }( ). exp , / 2i ip pω ω= ϒ Θ −    
where 

{ }
1

0

( ) [ ]exp , / 2
d

i i
i

p pω ω
−

=

 
ϒ = Θ − 

  
∑  

Moreover, the Hamiltonian H  is concave 
and ( ) 2 lo g ( )H p p= ϒ . 
Remark 3. Proposition 1 can be easily 
applied to the interior Hamiltonian H and the 
boundary Hamiltonian 

i
Hδ  to show the 

existence of saddle points and the concavity 
of these Hamiltonians. The formulae for the 
saddle points are as follows. Let * *( (.), (.))θΘ
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be the saddle point for H , and * *( (.), (.))
i iδ δθΘ be the saddle point for

i
Hδ . Then 

1 1 2 2 2 1
* * 2 2 2 2

1 2 2( ) ( ) ( ). ( , , (1 ) , )
p p p p p p

d dp p p e e e eθ λ µ ϕ µ ϕ µ
− −

−
Θ = = ϒ −

1 2 2 1

1 1

* * 2 2 2
1 1 2 2( ) ( ) ( ). ( , , (1 ) , )

p p p p

d dp p p e e eδ δθ λ µ ϕ µ ϕ µ
−

−
Θ = = ϒ −

1 1 2

2 2

* * 2 2
2 1 2 2( ) ( ) ( ). ( , , (1 ) , )

p p p

d dp p p e eδ δθ λ µ ϕ µ ϕ µ
−

−
Θ = = ϒ −

 
where ( )pϒ , ( )i pϒ  are normalizing constants 
so that all these vectors are probability 
vectors (i.e., elements in ( )P+ Ω ). Moreover, 

( ) 2 lo g ( )H p p= ϒ  and ( ) 2 lo g ( )
i iH p pδ = ϒ . 

C. Piecewise affine subsolutions and 
mollification 
The goal of this section is to construct 
piecewise affine subsolution W and its 
mollification. W must have the following 
properties (see Fig. 4). 
1. The function W can be written as 

1 2 3^ ^W W W W=  where kW  is an affine 
function for each k = 1, 2, 3. 
2. D is divided into three regions 1R , 2R  and

3R , such that in each region kR , kW W= . 
3. The subsolution property 

( ( )) ( ( )) 0kH DW x H DW x= ≥  holds for every x
in the interior of region kR . 
4. The Dirichlet boundary inequality 

( ) 0W x ≤  for ex δ∈ . 
5. The Neumann boundary inequality

( ), 0iDW x d ≥ , whenever ix δ∈ and ( )DW x

exists. 

 
Fig. 4. The piecewise affine subsolution 

 
This can be easily achieved – indeed, fixing 
an arbitrary 0δ > , one can let, for each k , 

( ) , 2k kW x r x kδ γ δ= + − (5.10) 
where the kr  are depicted in Fig. 5. It is not 
difficult to check that satisfies all the 
requirements for all small 0δ > . 
Define the regions { }2 0,1, 2 :iR i⊂ ∈   

{ }2
1 1 2 3: ( ) ( ) ^ ( )R x W x W x W xδ δ δ= ∈ ≤  

{ }2
2 2 1 3: ( ) ( ) ^ ( )R x W x W x W xδ δ δ= ∈ ≤  

{ }2
3 3 1 2: ( ) ( ) ^ ( )R x W x W x W xδ δ δ= ∈ ≤  

These regions are depicted in Fig. 4. Note 
that 

( ) ( )iW x W xδ δ=  for ix R∈  

1 2 3^ ^W W W Wδ δ δ δ=  
satisfies all the requirements for all small 

0δ > . Define 
1 2 ( 1, 1)r γ= − −                
2 2 ( 1,0) 2( )(0, 1)r γ γ α= − + − −           
3 (0,0)r =  

where α is given by 
 

[ ]
[ ]

1 1 2 1 2

1 1 1 2

log ( (1 ) ) ,
log ( ) ,

if
if

µ µ λ β µ µ µ
α

µ λ βµ µ µ
 + − − ≥=  + <
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Fig. 5. The Hamiltonians and the choice of { }kr  

 
It is not difficult to check that 0 α γ< ≤ . 
According to equation 5.10 we have 

1 1( ) , 2W x r xδ γ δ= + −  

2 2( ) , 2 2W x r xδ γ δ= + −  

3 3( ) , 2 (1 2 )W x r xδ γ γ α δ= + − +  
The exponential weighting of W δ  with 
parameter ε  yields a smooth function 

3
,

1

1( ) log exp ( )k
k

W x W xε δ δε
ε=

 = − − 
 ∑  

that satisfies 
3

, ,

1

( ) ( ) kk
k

DW x x rε δ ε δρ
=

=∑  

{ }
{ }

,
3

1

exp ( )
( )

exp ( )

i
i

k
k

W x
x

W x

δ
ε δ

δ

ε
ρ

ε
=

−
=

−∑
  

We have the following result. 

Lemma 1. For each k  we have ( ) 0kH r ≥ , and 
the function ,W ε δ  satisfies 
1. ,( ( )) 0H DW xε δ ≥  for x D∈ , 
2. , ( ) 0W xε δ ≤ for ex δ∈ , 
3. for each 1,2,i = and ix δ∈ , 

3
, ,

1

( ( )) ( ) ( )
i i kk

k

H DW x x H rε δ ε δ
δ δρ

=

≥∑
{ }expC δ ε≥ − −  

for some constant C that only depends on the 
system parameter Θ . 
 
D. The importance sampling scheme and its 
asymptotics 
The importance sampling scheme based on 

,W ε δ is as follows. Define the stochastic 
kernel [ ], . | .ε δΘ  on Ω by 

[ ]
3

, , *

1

. | ( ),kk
k

x rε δ ε δρ
=

Θ = Θ∑ if x D∈  (5.11) 
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and 

[ ]
3

, , *

1

. | ( ),
i kk

k

x rε δ ε δ
δρ

=

Θ = Θ∑ if ix δ∈  (5.12) 

Here the formulae for *Θ  and *
iδΘ can be 

found in Remark 3. 
We will allow ε and δ to be n-dependent, 
denoted by nε , nδ  and let [ ] [ ],. | . . | .n nn ε δΘ ≡ Θ . 
Theorem 1. The importance sampling 
estimator ˆnp  is asymptotically optimal if 

0nδ → , 0n nε δ → , and nnε → ∞ . 
One can also use a fixed pair of parameters ε  
and δ  for all n , According to [7] a good 
choice may be to take logn n nδ ε ε= − . 
 
6 Numerical results 
Two experiments have been investigated to 
show the relation between the relative 
deadline,η , and the probability of missing 
deadline, dϕ  then we use the results in the 
importance sampling technique to estimate 
the probability of total population overflow 
in the network. In the first experiment 2 0.5µ =

, and for various values of λ , it is shown that 
how a change in η  affects the probability of 
missing deadline. As illustrated in Fig. 6, the 
increase in relative deadline reduces dϕ  like 
a decay function. Further increase in the 
relative deadline moves the probability of 
missing deadline towards zero, in such case, 

the possibility of missing deadline of 
customers is very low. On the contrary, 
assigning low values for η  increases the 
probability of missing customers' deadline 
leading to raising the feedback rate in the 
network. In this experiment for 0.1λ =  we 
have also studied the relation between η and 

dϕ  for some values of 2µ . As shown in Fig. 7, 
corresponding to a definite measure of the 
relative deadline, the increase in 2µ  decreases 
the probability of missing deadline, as the 
result of increase in the customers' service 
rate at node two, and decrease of their 
waiting time at the second queue. 
The customers' arrival rate at the second 
queue is 1λ , thanks to the stability assumption 
in the network, thus the value of 1µ  will not 
affect the probability of missing deadline.  
In the second experiment we evaluate the 
performance of the network for arbitrary 
values of the offered load ( 2µ

λ
). Fig. 8 

represents the probability of missing deadline 
for a set of offered loads, 12n =  and various 
values of η . In this figure the network has 
the best performance for 6η = and it has the 
worst one for 1η = .  
 

 
Fig. 6. Probability of missing deadline for various 

 
arrival rates 
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Fig. 7. Probability of missing deadline for various 

 
service rates 

 
Fig. 8. Probability of missing deadline for various 

 
service rates 

The above results have been used in the 
importance sampling technique to estimate 
the probability of total population overflow 
in the network for arbitrary values of dϕ . For 
the buffer size of the network we set n=12, 

and each estimate consists of 15000 
replications. We run simulations for 0.2,dϕ =

0.4  and 0.6 .  

 
Table 1. Importance sampling estimation, 0.1 , 0.5 , 0.41 2λ µ µ= = =  

 
 

Table 2. Importance sampling estimation, 0.1λ = , 1 0.4µ = , 2 0.5µ =  

 
 

In Table 1 we set 0.1λ = , 1 0.5µ =  and 2 0.4µ = , 
In Table 2 we set 0.1λ = , 1 0.4µ =  and 2 0.5µ = . 
In Tables 3 and 4 the previous simulations 
repeated for n=20. 

In all tables, "Std. Err" stands for "Standard 
Error" and "C.I." for "Confidence Interval". 
The results of simulations indicate that the 
performance of the importance sampling 
technique is stable across different 
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simulations, with estimates that are close to 
the theoretical value with small standard 

errors.  

 
Table 3. Importance sampling estimation, 0.1λ = , 1 0.5µ = , 2 0.4µ =  

 
 

Table 4. Importance sampling estimation, 0.1λ = , 1 0.4µ = , 2 0.5µ =  

 
 

7 Conclusion 
In this paper, we deal with the concept of 
deadline on a two-node tandem queue with 
feedback in which arrival and service rates 
are modulated by an exogenous finite state 
Markov process. Under such condition, we 
have extended importance sampling 
technique of Dupuis et. al. They have 
considered constant feedback rate with no 
connection to offered load of the network. 
Based on the definition of deadline for 
customers in the second queue, we have 
calculated the probability of missing 
deadline, and have shown how the feedback 
rate of the network is affected by the 
deadline value. We applied the feedback rate 
in importance sampling technique for 
estimating the probability of total buffer 
overflows. Our proposed method achieves 
more reality than previous works. 
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